
Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

HIDDEN SURFACE REMOVAL

An important problem in computer graphics, hidden surface removal. We are given collection

of objects in 3-space, represented, say, by a set of polygons, and a viewing situation, and we

want to render only the visible surfaces.

Algorithm Types

Object precision: The algorithm computes its results to machine precision (the precision used to

represent object coordinates). The resulting image may be enlarged many times without

significant loss of accuracy. The output is a set of visible objects faces, and the portions of faces

that are only partially visible.

Image precision: The algorithm computes its results to the precision of a pixel of the image.

Thus, once the image is generated, any attempt to enlarge some portion of the image will result

in reduced resolution.

Back-face Removal:

This is a simple trick, which can eliminate roughly half of the faces from consideration. Assuming

that the viewer is never inside any of the objects of the scene, then the back sides of objects are

never visible to the viewer, and hence they can be eliminated from consideration.

For each polygonal face, we assume an outward pointing normal has been computed. If this

normal is directed away from the viewpoint, that is, if its dot product with a vector directed

towards the viewer is negative, then the face can be immediately discarded from consideration.

View Frustum Culling: If a polygon does not lie within the view frustum (recall from the lecture

on perspective), that is, the region that is visible to the viewer, then it does not need to be rendered.

This automatically eliminates polygons that lie behind the viewer. This amounts to clipping a 2-

dimensional polygon against a 3-dimensional frustum. The Liang-Barsky clipping algorithm can

be generalized to do this.

Visibility Culling: Sometimes a polygon can be culled because it is “known” that the polygon

cannot be visible, based on knowledge of the domain. For example, if you are rendering a room

of a building, then it is reasonable to infer that furniture on other floors or in distant rooms on the

same floor are not visible. This is the hardest type of culling, because it relies on knowledge of

the environment. This information is typically precomputed, based on expert knowledge or

complex analysis of the environment.

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

Depth-Sort Algorithm:

A fairly simple hidden-surface algorithm is based on the principle of painting objects from back

to front, so that more distant polygons are overwritten by closer polygons. This is called the

depthsort algorithm.

This suggests the following algorithm: sort all the polygons according to increasing distance from

the viewpoint, and then scan convert them in reverse order (back to front). This is sometimes

called the painter’s algorithm because it mimics the way that oil painters usually work (painting

the background before the foreground). The painting process involves setting pixels, so the

algorithm is an image precision algorithm. There is a very quick-and-dirty technique for sorting

polygons, which unfortunately does not generally work.

Compute a representative point on each polygon (e.g. the centroid or the farthest point to the

viewer). Sort the objects by decreasing order of distance from the viewer to the representative

point (or using the pseudodepth which we discussed in discussing perspective) and draw the

polygons in this order. Unfortunately, just because the representative points are ordered, it does

not imply that the entire polygons are ordered.

Worse yet, it may be impossible to order polygons so that this type of algorithm will work. The

Fig. blow shows such an example, in which the polygons overlap one another cyclically.

The basic algorithm:

1. Sort all polygons in ascending order of maximum z-values.

2. Resolve any ambiguities in this ordering.

3. Scan convert each polygon in the order generated by steps (1) and (2).

The necessity for step (2) can be seen in the simple case shown in following Figure.

Hard cases to depth-sort.

In these cases we may need to cut one or more of the polygons into smaller polygons so that the

depth order can be uniquely assigned. Also observe that if two polygons do not overlap in x; y

space, then it does not matter what order they are drawn in.

Here is a snapshot of one step of the depth-sort algorithm. Given any object, define its z-extents

to be an interval along the z-axis defined by the object’s minimum and maximum z-coordinates.

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

We begin by sorting the polygons by depth using farthest point as the representative point, as

described above. Let’s consider the polygon P that is currently at the end of the list.

Consider all polygons Q whose z-extents overlaps P’s. This can be done by walking towards the

head of the list until finding the first polygon whose maximum z-coordinate is less than P’s

minimum z-coordinate. Before drawing P we apply the following tests to each of these polygons

Q. If any answers is “yes”, then we can safely draw P before Q.

1. Are the x-extents of P and Q disjoint?

2. Are the y-extents of P and Q disjoint?

3. Consider the plane containing Q. Does P lie entirely on the opposite side of this plane

from the viewer?

4. Consider the plane containing P. Does Q lie entirely on the same side of this plane from

the viewer?

5. Are the projections of the polygons onto the view window disjoint?

In the cases of (1) and (2), the order of drawing is arbitrary. In cases (3) and (4) observe that if

there is any plane with the property that P lies to one side and Q and the viewer lie to the other

side, then P may be drawn before Q. The plane containing P and the plane containing Q are just

two convenient planes to test. Observe that tests (1) and (2) are very fast, (3) and (4) are pretty

fast, and that (5) can be pretty slow, especially if the polygons are nonconvex.

If all tests fail, then the only way to resolve the situation may be to split one or both of the

polygons. Before doing this, we first see whether this can be avoided by putting Q at the end of

the list, and then applying the process on Q. To avoid going into infinite loops, we mark each

polygon once it is moved to the back of the list.

Once marked, a polygon is never moved to the back again. If a marked polygon fails all the tests,

then we need to split. To do this, we use P’s plane like a knife to split Q. We then take the resulting

pieces of Q, compute the farthest point for each and put them back into the depth

sorted list.

In theory this partitioning could generate O(n2) individual polygons, but in practice the number

of polygons is much smaller. The depth-sort algorithm needs no storage other than the frame

buffer and a linked list for storing the polygons (and their fragments). However, it suffers from

the deficiency that each pixel is written as many times as there are overlapping polygons.

Depth-buffer Algorithm:

The depth-buffer algorithm is one of the simplest and fastest hidden-surface algorithms. Its main

drawbacks are that it requires a lot of memory, and that it only produces a result that is accurate

to pixel resolution and the resolution of the depth buffer. Thus the result cannot be scaled easily

and edges appear jagged (unless some effort is made to remove these effects called “aliasing”).

It is also called the z-buffer algorithm because the z-coordinate is used to represent depth. This

algorithm assumes that for each pixel we store two pieces of information,

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

(1) the color of the pixel (as usual), and

(2) the depth of the object that gave rise to this color.

The depth-buffer values are initially set to the maximum possible depth value.

Suppose that we have a k-bit depth buffer, implying that we can store integer depths ranging from

0 to D = 2k − 1. After applying the perspective-with-depth transformation, we know that all depth

values have been scaled to the range [−1; 1]. We scale the depth value to the range of the depth-

buffer and convert this to an integer, e.g. b(z + 1)=(2D)c. If this depth is less than or equal to the

depth at this point of the buffer, then we store its RGB value in the color buffer. Otherwise we do

nothing.

This algorithm is favored for hardware implementations because it is so simple and essentially

reuses the same algorithms needed for basic scan conversion.

Z-Buffering: Algorithm

The easiest way to achieve hidden-surface removal is to use the depth buffer (sometimes called a

z-buffer). A depth buffer works by associating a depth, or distance from the viewpoint, with each

pixel on the window. Initially, the depth values for all pixels are set to the largest possible

distance, and then the objects in the scene are drawn in any order. Graphical calculations in

hardware or software convert each surface that's drawn to a set of pixels on the window where

the surface will appear if it isn't obscured by something else. In addition, the distance from the

eye is computed. With depth buffering enabled, before each pixel is drawn, a comparison is done

with the depth value already stored at the pixel.

allocate z-buffer; // Allocate depth buffer →Same size as viewport.

for each pixel (x,y) // For each pixel in viewport.

writePixel(x,y,backgrnd); // Initialize color.

writeDepth(x,y,farPlane); // Initialize depth (z) buffer.

for each polygon // Draw each polygon (in any order).

for each pixel (x,y) in polygon // Rasterize polygon.

pz = polygon’s z-value at (x,y); // Interpolate z-value at (x, y).

if (pz < z-buffer(x,y)) // If new depth is closer:

writePixel(x,y,color); // Write new (polygon) color.

writeDepth(x,y,pz); // Write new depth.

Note: This assumes’ you’ve negated the z values!right edges.

Advantages:

Easy to implement in hardware (and software!)

Fast with hardware support Fast depth buffer memory

Hardware supported

Process polygons in arbitrary order

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

Handles polygon interpenetration trivially

Disadvantages:

Lots of memory for z-buffer:

Integer depth values

Scan-line algorithm

Prone to aliasing

Super-sampling

Overhead in z-checking: requires fast memory

Scan-Line Algorithm

The scan-line algorithm is another image-space algorithm. It processes the image one scan-line

at a time rather than one pixel at a time. By using area coherence of the polygon, the processing

efficiency is improved over the pixel-oriented method. Using an active edge table, the scan-line

algorithm keeps track of where the projection beam is at any given time during the scan-line

sweep. When it enters the projection of a polygon, an IN flag goes on, and the beam switches

from the background colour to the colour of the polygon. After the beam leaves the polygon's

edge, the colour switches back to background colour. To this point, no depth information need be

calculated at all. However, when the scan-line beam finds itself in two or more polygons, it

becomes necessary to perform a z-depth sort and select the colour of the nearest polygon as the

painting colour.

Accurate bookkeeping is very important for the scan-line algorithm. We assume the scene is

defined by at least a polygon table containing the (A, B, C, D) coefficients of the plane of each

polygon, intensity/colour information, and pointers to an edge table specifying the bounding lines

of the polygon. The edge table contains the coordinates of the two end points, pointers to the

polygon table to indicate which polygons the edge bounds, and the inverse slope of the x-y

projection of the line for use with scanline algorithms. In addition to these two standard data

structures, the scan-line algorithm requires an active edge list that keeps track of which edges a

given scan line intersects during its sweep.

The active edge list should be sorted in order of increasing x at the point of intersection with the

scan line. The active edge list is dynamic, growing and shrinking as the scan line progresses down

the screen.

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

In the following Figure scan-line S1 must deal only with the left-hand object. S2 must plot both

objects, but there is no depth conflict. S3 must resolve the relative z-depth of both objects in the

region between edge E5 and E3 . The right-hand object appears closer. The active edge list for

scan line S1 contains edges E1 and E2 . From the left edge of the viewport to edge E1 , the beam

paints the background colour. At edge E1 , the IN flag goes up for the left-hand polygon, and the

beam switches to its colour until it crosses edge E2 , at which point the IN flag goes down and

the colour returns to background. For scan-line S2 , the active edge list contains E1 , E3 , E5 ,

and E6 . The IN flag goes up and down twice in sequence during this scan. Each time it goes up

pointers identify the appropriate polygon and look up the colour to use in painting the polygon.

For scan line S3 , the active edge list contains the same edges as for S2 , but the order is altered,

namely E1 , E5 , E3 , E6 . Now the question of relative z-depth first appears. The scan-line

algorithm for hidden surface removal is well designed to take advantage of the area coherence of

polygons. As long as the active edge list remains constant from one scan to the next, the relative

structure and orientation of the polygons painted during that scan does not change. This means

that we can "remember" the relative position of overlapping polygons and need not recompute

the z-depth when two or more IN flags go on. By taking advantage of this coherence we save a

great deal of computation.

Area Subdivision Algorithm

John Warnock proposed an elegant divide-and-conquer hidden surface algorithm. The algorithm

relies on the area coherence of polygons to resolve the visibility of many polygons in image space.

Depth sorting is simplified and performed only in those cases involving image-space overlap.

Warnock's algorithm classifies polygons with respect to the current viewing window into trivial

or nontrivial cases. Trivial cases are easily handled. For nontrivial cases, the current viewing

window is recursively divided into four equal sub-windows, each of which is then used for

reclassifying remaining polygons. This recursive procedure is continued until all polygons are

trivially classified or until the current window reaches the pixel resolution of the screen. At that

point the algorithm reverts to a simple z-depth sort of the intersected polygons, and the pixel

colour becomes that of the polygon closest to the

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

viewing screen All polygons are readily classified with respect to the current window into the

four categories illustrated in following Figure.

A noteworthy feature of Warnock's algorithm concerns how the divide-and-conquer area

subdivision preserves area coherence. That is, all polygons classified as surrounding and outside

retain this classification with respect to all sub-windows generated by recursion. This aspect of

the algorithm is the basis for its efficiency. The algorithm may be classified as a radix four quick

sort. Windows of 1024× 1024 pixels may be resolved to the single pixel level with only ten

recursive calls of the algorithm.

While the original Warnock algorithm had the advantages of elegance and simplicity, the

performance of the area subdivision technique can be improved with alternative subdivision

strategies. Some of these include:

1. Divide the area using an enclosed polygon vertex to set the dividing boundary.

2. Sort polygons by minimum z and use the front polygon as the window boundary.

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

Ray-Tracing

A ray tracer works by computing one pixel at a time, and for each pixel the basic task is to find

the object that is seen at that pixel’s position in the image. Each pixel “looks” in a different

direction, and any object that is seen by a pixel must intersect the viewing ray, a line that emanates

from the viewpoint in the direction that pixel is looking. The particular object we want is the one

that intersects the viewing ray nearest the camera, since it blocks the view of any other objects

behind it. Once that object is found, a shading computation uses the intersection point, surface

normal, and other information (depending on the desired type of rendering) to determine the color

of the pixel. This is shown in Figure

Where the ray intersects two triangles, but only the first triangle hit, T2, is shaded.

A basic ray tracer therefore has three parts:

Ray generation, which computes the origin and direction of each pixel’s viewing ray based on

the camera geometry;

Ray intersection, which finds the closest object intersecting the viewing ray;

Ray shading, which computes the pixel color based on the results of ray intersection.

The structure of the basic ray tracing program is:

for each pixel do

compute viewing ray

find first object hit by ray and its surface normal n

set pixel color to value computed from hit point, light, and n

The basic methods for ray generation, ray intersection, and shading, that are sufficient for

implementing a simple demonstration ray tracer.

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

BSP Trees

A Binary Space Partitioning (BSP) tree represents a recursive, hierarchical partitioning, or

subdivision, of n-dimensional space into convex sub-spaces. BSP tree construction is a process

which takes a subspace and partitions it by any hyperplane that intersects the interior of that

subspace. The result is two new subspaces that can be further partitioned by recursive application

of the method.

A "hyperplane" in n-dimensional space is an n-1-dimensional object which can be used to divide

the space into two half-spaces. For example, in three-dimensional space, the "hyperplane" is a

plane. In two-dimensional space, a line is used. BSP trees are extremely versatile, because they

are powerful sorting and classification structures. They have uses ranging from hidden surface

removal and ray tracing hierarchies to solid modelling and robot motion planning.

BSP trees are closely related to Quadtrees and Octrees. Quadtrees and Octrees are space

partitioning trees which recursively divide sub-spaces into four and eight new sub-spaces,

respectively. A BSP Tree can be used to simulate both of these structures.

BSP Tree Construction

Given a set of polygons in three-dimensional space, we want to build a BSP tree which contains

all of the polygons. For now, we will ignore the question of how the resulting tree is going to be

used. The algorithm to build a BSP tree is very simple:

1. Select a partition plane.

2. Partition the set of polygons with the plane.

3. Recurse with each of the two new sets.

The choice of partition plane depends on how the tree will be used, and what sort of efficiency

criteria you have for the construction. For some purposes, it is appropriate to choose the partition

plane from the input set of polygons. Other applications may benefit more from axis aligned

orthogonal partitions If all of the points lie to one side of the plane, then the entire polygon is on

that side and does not need to be split.

If some points lie on both sides of the plane, then the polygon is split into two or more pieces.

The basic algorithm is to loop across all the edges of the polygon and find those for which one

vertex is on each side of the partition plane. The intersection points of these edges and the plane

are computed, and those points are used as new vertices for the resulting pieces.

Classifying a point with respect to a plane is done by passing the (x,y,z) values of the point into

the plane equation, ax+by+cz+d=0 . The result of this operation is the distance from the plane to

the point along the plane's normal vector. It will be positive if the point is on the side of the plane

pointed to by the normal vector, negative otherwise. If the result is 0, the point is on the plane.

For those not familiar with the plane equation, the values a , b , and c are the coordinate values

of the normal vector. The value of d can be calculated by substituting a point known to be on the

plane for x , y , and z into the plane equation.

Computer Graphics Handouts by: Santosh Kumar, M. Tech, Ph.D., IITM

www.thestudycampus.com

Convex polygons are generally easier to deal with in BSP tree construction than concave ones,

because splitting them with a plane always results in exactly two convex pieces. Furthermore, the

algorithm for splitting convex polygons is straightforward and robust.

Hidden surface removal

Probably the most common application of BSP trees is hidden surface removal in three

dimensions. BSP trees provide an elegant, efficient method for sorting polygons via a depth first

tree walk. This fact can be exploited in a back to front "painter's algorithm" approach to the visible

surface problem, or a front to back scan-line approach.

BSP trees are well suited to interactive display of static (not moving) geometry because the tree

can be constructed during a preprocessing stage. Then the display from any arbitrary viewpoint

can be done in linear time. One reason that BSP trees are so elegant for the painter's algorithm is

that the splitting of difficult polygons is an automatic part of tree construction. To draw the

contents of the tree, perform a back to front tree traversal. Begin at the root node and classify the

eye point with respect to its partition plane.

Draw the subtree at the far child from the eye, then draw the polygons in this node, then draw the

near subtree. Repeat this procedure recursively for each subtree.

When building a BSP tree specifically for hidden surface removal, the partition planes are usually

chosen from the input polygon set. However, any arbitrary plane can be used if there are no

intersecting or concave polygons.

Efficient BSP Trees

The upper bound on space and time complexity is O(n2) for n polygons. The expected case is

O(n) for most models. Construction of an optimal tree is an NP-complete problem. There are

several strategies for making a BSP tree more efficient.

Minimizing splitting:

An obvious problem with BSP trees is that polygons get split during the construction phase, which

results in a larger number of polygons. Larger numbers of polygons translate into larger storage

requirements and longer tree traversal times. This is undesirable in all applications of BSP trees,

so some scheme for minimizing splitting will improve tree performance.

Tree balancing:

Tree balancing is important for uses which perform spatial classification of points, lines, and

surfaces. This includes ray tracing and solid modelling. Tree balancing is important for these

applications because the time complexity for classification is based on the depth of the tree.

Unbalanced trees have deeper subtrees, and therefore have a worse worst case. For the hidden

surface problem, balancing doesn't significantly affect runtime.

